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Abstract
A Liouville-type equation is solved perturbatively for the exact pdf of
fluctuating velocities by expansion about an invariant Gaussian measure, which
is an approximation to the symmetric part of the pdf and is constrained to give
the correct covariance. The antisymmetric part of the pdf is calculated to the
lowest nontrivial order and leads to closed equations for the covariance in terms
of a response function which arises from the Liouville operator averaged against
the ground-state distribution. As the latter is a stationary Gaussian pdf, we
obtain an expression for the system response which is linear in the covariance.

PACS numbers: 47.27.Ak, 47.27.Eq, 47.27.Gs, 05.20−y

1. Introduction

The bedrock problem in the statistical theory of turbulence, as in all stochastic many-body
problems, is the fact that the moments form an open hierarchy. This closure problem received
some attention in the early 1960s, with the development of renormalized perturbation theories
[1–5], which were physically realizable but unfortunately were found not to be compatible
with the Kolmogorov −5/3 spectral law at large Reynolds numbers (K41).

Various explanations were given for this failure, but it was later shown [6] that all these
theories have an incorrect interpretation of energy conservation in terms of their response
functions. This arises due to an incorrect division of the energy transfer spectrum into input
and output parts, rather as if in a Fermi master equation. In contrast, the local energy transfer
(LET) theory [6] used a local (in wavenumber) energy balance to determine the response
function, in which the entire transfer spectrum acted as an input or an output, according to the
value of the wavenumber. This is in accord with experiment and was later extended to derive
a two-time form of LET theory [7]. Both these forms of the theory are compatible with K41.

We can sum up the existing state of turbulence theory by pointing to the existence of
the Kraichnan–Wyld covariance equations. These equations represent an exact second-order
truncation of renormalized perturbation theory. Originally derived heuristically by Kraichnan

1751-8113/09/175501+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/17/175501
mailto:wdm@ph.ed.ac.uk
http://stacks.iop.org/JPhysA/42/175501


J. Phys. A: Math. Theor. 42 (2009) 175501 D McComb

[1], their derivation can rely either on the topology of Feynmann-type diagrams [2] or on
reversion of power series [8]. They satisfy all the required symmetries and, in particular, they
conserve energy, displaying the correct antisymmetric behaviour of the transfer spectrum. With
an appropriate choice of renormalized response function R they can predict the free decay of
isotropic turbulence, without invoking arbitrary constants, in broadly good agreement with
experiment and numerical simulation.

The turbulence problem in this context becomes one of finding a principle to determine the
renormalized response function R, and it was suggested [9, 10] that the classical fluctuation–
dissipation relation (FDR) could be used for this purpose. Introducing the covariance C and
response function R in wavenumber, this takes the well-known form

R(k; t, t ′)C(k; t ′, t ′) = C(k; t, t ′). (1)

Also, it was later realized that the LET theory could be derived retrospectively from the
Kraichnan–Wyld equations by introducing the above relationship: see [11] for a discussion
and references therein, and also [12] for an interpretation of closures in terms of the FDR.

While there is a body of evidence that (1) can be used in a pragmatic way to study
macroscopic, non-Hamiltonian problems, there is also some unease with the fact that the
derivation of this simple linear relationship is not itself applicable to such systems. It was
therefore a welcome development, when it was shown that a general fluctuation–response
relationship could be obtained for chaotic dynamical systems which were mixing, in which
the response was related to the invariant measure of the system [13, 14]. It was also shown that
this general fluctuation–response relationship reduced to (1) for the case of Gaussian invariant
measure. For a further discussion of these topics, see [15, 16]: at this point we shall merely
remark that fluid turbulence is inherently non-Gaussian, so that it is by no means obvious that
(1) can apply.

In this paper we follow in the footsteps of Edwards [3] and solve the Liouville equation
perturbatively for the turbulence probability distribution functional. We extend the analysis
from the single-time stationary form [3] to the non-stationary two-time form. In the process,
we show that (1) holds to the lowest nontrivial order in perturbation theory.

2. The basic equations

Here we introduce the general notation and the basic equations. A general discussion of these
equations may be found in [17]. Consider the solenoidal Navier–Stokes equation (NSE) in
wavenumber (k) space:(

∂

∂t
+ νk2

)
uα(k, t) = Mαβγ (k)

∫
d3j uβ( j, t)uγ (l, t) + fα(k, t), (2)

where ν is the fluid kinematic viscosity, l = k − j, fα(k, t) is an arbitrarily chosen stirring
force which we have to specify, and the inertial transfer operator Mαβγ (k) is given by
Mαβγ (k) = (2i)−1[kβPαγ (k) + kγ Pαβ(k)], while the projector Pαβ(k) is expressed in terms of
the Kronecker delta as Pαβ(k) = δαβ − kαkβ/k2. The covariance of the fluctuating velocity
field may be introduced as

Cαβ(k, k′; t, t ′) ≡ 〈uα( k, t)uβ(k′, t ′)〉 = Pαβ(k)δ(k + k′)C(k; t, t ′), (3)

for isotropic, homogeneous turbulence.
Also, we may anticipate the introduction of a unimodal response tensor Rαα′(k; t, t ′), for

t > t ′, and state its isotropic form as
Rαα′(k; t, t ′) = Pαα′(k)R(k; t, t ′), (4)

where R(k; t, t ′) is called the response function.
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In order to define the ensemble (and, when required, to study stationary turbulence)
we introduce stirring forces. These are denoted by fα(k, t) and can be added to the right-
hand side of the equation of motion, as we have done here in (2). These forces must be
chosen to be isotropic, homogeneous and (in order to maintain incompressibility) solenoidal.
It is usual to consider random forces with a multivariate normal probability distribution
such that the associated functional integrals are analytically tractable. It is also usual to
assume that the autocorrelation of the forces is instantaneous in time and we represent this by
choosing the time autocorrelation to be a delta function. A form of correlation which satisfies
all these requirements is

〈fα(k, t)fβ(k′, t ′)〉 = Pαβ(k)W(k)δ(k + k′)δ(t − t ′). (5)

Here W(k) is a spectral energy density which is related to the rate at which the force does
work on the fluid.

3. Statistical formulation of the problem

We characterize the system by the exact probability distribution functional (pdf) which
we denote by P [u, t], or P for short. It may be defined, in the language of statistical
mechanics, as P [u, t] = the probability that the ‘phase’ of the system lies between u(k, t)

and u(k, t) + du(k, t). It is this pdf which we require in order to evaluate the covariance
Cαβ(k, k′; t, t ′), and other associated statistical quantities. Such averages will be represented
by angle brackets.

The Liouville equation, which expresses conservation of probability, may be written
[3, 18] as

∂P [u, t]

∂t
+

∫
d3p

{
Mσρδ(p)

∫
d3nuρ(n, t)uδ(m, t) − νp2uσ (p, t)

− ∂

∂uσ (−p, t)
W(k)

}
∂P [u, t]

∂uσ (p, t)
= 0, (6)

where m = p − n. This equation was solved using perturbation methods by Edwards [3], for
the stationary case where ∂P/∂t = 0, and by a variant of this method by Herring, for both the
stationary case [4] and the nonstationary case [5]. For later use, it will be helpful to write it
(with some rearrangement) in the symbolic form:

∂P/∂t + LWP + LP + V P = 0, (7)

where

LWP = −
∫

d3p
∂

∂uσ (p, t)
W(k)

∂P [u, t]

∂uσ (−p, t)
; LP = −

∫
d3pνp2uσ (p, t)

∂P [u, t]

∂uσ (p, t)
,

(8)

and

V P =
∫

d3p Mσρδ(p)

∫
d3n uρ(n, t)uδ(m, t)

∂P [u, t]

∂uσ (p, t)
. (9)

In the work presented here we shall consider the nonstationary case and hence we will put
W(k) = 0 and so LWP = 0. This means that we are considering freely decaying turbulence,
but our approach will also be valid for the stationary case.
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4. Perturbative solution of the Liouville equation

The technique pioneered by Edwards is rather subtle, and relies on underlying symmetry
considerations, which only emerge when one works through the analysis in some detail.
Accordingly, it may be helpful to make the symmetry aspects manifest from the beginning,
and this we now do. Let us anticipate that the probability distribution functional may be found
as an approximation, in the form of the expansion:

P [u, t] = P0[u] + εP1[u] + ε2P2[u] + · · · , (10)

where ε = 1 is a book-keeping parameter. Note that the coefficients P1, P2, P3, and so on,
are invariant distributions, the unsteady nature of the full distribution P being represented by
changes in their relative magnitudes as time goes on. We now decompose the pdf into two
parts which are respectively symmetric and antisymmetric, under the interchange of u and
−u; thus,

P = PS + PA. (11)

These can be interpreted in terms of expansion (10), where PS consists of the even-order
terms P0, P2, . . . while PA comprises the odd-order terms. Note that the symmetric part of
the distribution PS determines the even-order moments, whereas the antisymmetric part PA

determines the odd-order moments.
Now we introduce a model for the pdf. We follow the example of Edwards [3] and choose

a model P S which will give the exact result for the velocity field covariance. In addition, we
shall require it to be mathematically tractable, such that we can perform functional integrals
against even-order products of the velocity field. That is, P S is chosen to be Gaussian and to
possess the following properties:∫

DuP S[u] = 1;
∫

DuP S[u]uu = 〈uu〉. (12)

Correspondingly, instead of the exact PA, we work with its approximation P A, which is
calculated from the Liouville equation using P S to approximate the exact PS . Hence we may
write an approximate expression for the triple moment as∫

DuP A[u]uuu = 〈uuu〉. (13)

It should be noted that the assumption of Gaussian form implies that P S does not possess the
correct flatness factor and to obtain this we require a correction �P S , say. In effect, we can
identify P S, P A and �P S , with P0, P1 and P2, and so we replace equation (11) by

P [u, t] = P S[u] + εP A[u] + ε2�P S[u], (14)

We may complete the specification of our zero-order model, by introducing an operator LS ,
such that it generates our model pdf P S ; thus,

∂P S

∂t
+ LSP S = 0. (15)

Now, we rewrite the Liouville equation (7) with the work term set equal to zero; in order
to adapt this to a form suitable for perturbation theory, we add and subtract our model operator
LS , leaving the equation unchanged. Then, we assign the order ε to the term V P as it is
antisymmetric in the velocity fields, and order ε2 to the difference term [L − LS]P , as this
represents the correction to the flatness factor as given by P S . Thus we may write (7) as

∂P

∂t
+ LSP + εV P + ε2[L − LS]P = 0, (16)
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substitute from (14) for P, and collect terms at each order of ε to obtain
ε0:

∂P S

∂t
+ LSP S = 0; (17)

ε1:

∂P A

∂t
+ V P S = 0; (18)

and so on.
The key equation here is (18) at order ε which we can write out in full and integrate with

respect to time as

P A = −
∫

ds

∫
d3p

∫
d3nMσρδ(p)uρ(n, s)uδ(m, s) × ∂P S

∂uσ (p, s)
. (19)

Note that we may check the consistency of our procedures by noting that this form for P A is
antisymmetric under the interchange of u with −u. Similarly, it may be verified that �P S is
symmetric, consisting, as it does, of terms like V 2P S .

5. The response function as a mean-field approximation

We may now use our approximation to the full pdf to obtain an equation for the two-time
covariance in the usual way from the Navier–Stokes equation, as given by (2); thus,(

∂

∂t
+ νk2

)
C

(
k; t, t ′

) = 1

2
Mαβγ (k)

∫
d3j

∫
DuP A uβ(j, t)uγ (l, t)uα(−k, t ′)

= 1

2
Mαβγ (k)

∫
d3j

∫
Du

∫
ds

∫
d3p Mσρδ(p)

∫
d3n

× uρ(n, s)uδ(m, s)P S

∂

∂uσ (p, s)
× [uβ( j, t)uγ (l, t)uα(−k, t ′)]. (20)

Note that in going from the first line to the second, we performed a partial functional integration
and dropped the resulting fifth-order moment, as this is zero when evaluated against an even
distribution. Also note that when the functional differential lands on the two velocity fields to
its left, the differentiation is at the same time and hence generates the usual delta functions (e.g.
δ(n − p)). As these are incompatible with the triangle relationships the resulting correlations
give zero and so these two terms do not contribute.

Now let T (k; t, t ′) stand for the right-hand side of (20), and denote the ground-state
average against P S by 〈· · ·〉S . Then we may write

T (k; t, t ′) = 1

2
Mαβγ (k)

∫
d3j

∫
ds

∫
d3p Mσρδ(p)

∫
d3n

×
〈
uρ(n, s)uδ(m, s)

∂

∂uσ (p, s)
[uβ( j, t)uγ (l, t)uα(−k, t ′)]

〉
S

. (21)

Differentiating each member of the triple product in turn then gives

T (k; t, t ′) = 1

2
Mαβγ (k)

∫
d3j

∫
ds

∫
d3p Mσρδ(p)

∫
d3n

×
[〈

uρ(n, s)uδ(m, s)uγ (l, t)uα(−k, t ′)
∂uβ(j, t)
∂uσ (p, s)

〉
S

5
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+

〈
uρ(n, s)uδ(m, s)uβ(j, t)uα(−k, t ′)

∂uσ (l, t)
∂uσ (p, s)

〉
S

+

〈
uρ(n, s)uδ(m, s)uβ(j, t)uγ (l, t)

∂uα(−k, t ′)
∂uσ (p, s)

〉
S

]
. (22)

At this point we make the assumption that the functional derivative can be treated as statistically
independent of the velocity field. This is, in effect, a mean-field approximation and is very
similar to the corresponding step taken by Kraichnan in the derivation of the direct interaction
approximation (DIA) [1]: also see page 56 in [18] or page 375 in [19]. Then, averages can be
evaluated in terms of the covariances using the properties of P S . Homogeneity leads to delta
functions, which are integrated out, along with the integrals with respect to p and n.

As an example, we will work out the average in the first term on the right-hand side of
equation (22), as follows:∫

d3p Mσρδ(p)

∫
d3n

〈
uρ(n, s)uδ(m, s)uγ (l, t)uα(−k, t ′)

∂uβ(j, t)
∂uσ (p, s)

〉
S

= 2
∫

d3pMσρδ(p)

∫
d3n〈uρ(n, s)uγ (l, t)〉S〈uδ(m, s)uα(−k, t ′)〉S

〈
∂uβ(j, t)
∂uσ (p, s)

〉
S

= 2
∫

d3pMσρδ(p)

∫
d3nCργ (l; t, s)Cδα(−k; t ′, s)δ(n + l)δ(m − k)

〈
∂uβ(j, t)
∂uσ (p, s)

〉
S

= 2Mσρδ(j)Cργ (k − j; t, s)Cδα(−k; t ′, s)
〈
∂uβ(j, t)
∂uσ (j, s)

〉
S

, (23)

where the factor 2 arises because there is another possible pairing. Note that some pairings are
forbidden: for instance, j = −l violates the triangle condition, and hence does not contribute.
Also, recall that m = p − n and l = k − j, so that the integration with respect to n yields the
delta function δ(p − j), and hence the integral with respect to p picks out the components of
the functional derivative on the wavenumber diagonal.

Next we define the response tensor Rαα′(k; t, t ′) in terms of the functional derivative;
thus, 〈

∂uα(k, t)

∂uα′(k, t ′)

〉
S

= Rαα′(k; t, t ′) for t > t ′, (24)

and substitute accordingly in each of the three terms on the right-hand side of equation (22).
Each of the three terms is multiplied by a factor of 2, as we have just seen for the first one, and
we can also rename dummy variables so that we can replace the sum of the first and second
terms by twice the first. Invoking the isotropic forms for the covariance and response tensors,
collecting terms and re-naming dummy variables as appropriate, we substitute back into (20)
to obtain the two-time covariance equation in the form(

∂

∂t
+ νk2

)
C(k; t, t ′) =

∫
d3j L(k, j)

[ ∫ t ′

0
dsR(k; t ′, s)C(j ; t, s)C(|k − j|; t, s)

−
∫ t

0
dsR(j ; t, s)C(k; s, t ′)C(|k − j|; t, s)

]
, (25)

where L(k, j) is defined by L(k, j) = −2Mαβγ (k)Mβαδ(j)Pγ δ(k − j). We may also derive an
analogous equation for the single-time C(k; t, t); thus,(

∂

∂t
+ 2νk2

)
C(k; t, t) = 2

∫
d3jL(k, j)

[∫ t

0
ds R(k; t, s)C(j ; t, s)C(|k − j|; t, s)

−
∫ t

0
ds R(j ; t, s)C(k; s, t)C(|k − j|; t, s)

]
. (26)
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Equations (25) for C(k; t, t ′) and (26) for C(k; t, t) are identical in form to the Kraichnan–
Wyld covariance equations [1, 2], but with one crucial difference. Here the response of the
system is not determined by the variation of the velocity field due to an infinitesimal change
in the stirring force. Instead the response function arises quite naturally when we carry out
the functional differentiation with respect to changes in the velocity field.

6. Conclusion

From equation (24) we have the definition of the response function. Noting that homogeneity
has imposed a unimodal structure on this, and that isotropy ensures that its tensor character
can be represented by the projector Pαβ(k), our expression for the response function is

R(k; t, t ′) = −
∫

Du( k, t)uα(k, t) × ∂P S[u(k, t), t]

∂uα(k, t)
, (27)

the last step following by partial integration. This result, although derived by very different
methods, is the same as the general form given by [13, 14]. As P S is a stationary Gaussian
distribution, it follows that (27) reduces to the linear form given by (1). We note that although
this is a linear result, when it is used in conjunction with equations (25) and (26) for the
covariances, the resulting statistical closure is fully nonlinear. It should also be noted that
in this sense the linear fluctuation–dissipation relation holds to all orders of renormalized
perturbation theory.
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